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ABSTRACT: Melt index (MI) is considered as one of the
most significant parameter to determine the quality and
the grade of the practical polypropylene polymerization
products. A novel ICO-VSA-RNN (RBF neural network
with ICO-VSA algorithm) MI prediction model is pro-
posed based on radial basis function (RBF) neural network
and improved chaos optimization (ICO), and variable-scale
analysis (VSA), where the ICO is first added and
then combined with the VSA to overcome the defects of
ICO and VSA, then the parameters of the RBF neural
network are optimized with them. At last, the RBF neural

network model for MI prediction model is developed.
Further researches on the optimal RBF neural network
model of MI prediction are carried out with the data from
a real industrial plant, and the prediction results
show that the performance of this prediction model is
much better than the RBF neural network model without
optimization. VC 2012 Wiley Periodicals, Inc. J Appl Polym Sci
000: 000–000, 2012
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INTRODUCTION

Polypropylene is a thermoplastic resin obtained by
the polymerization of propylene, is the most impor-
tant downstream product of propylene, 50% of the
propylene in the world are used to make polypro-
pylene,1 and it is one of the five general-purpose
plastic which is closely related to our daily life.
Because polypropylene products have a wide range
of uses, polypropylene industry has become a big
business which has the great influences to the world
in aspects of industry, economy, military, and so on.
MI, which determines the difference uses of the
products, is the most significant parameter to control
the quality of the polypropylene products. The tradi-
tional measurement method used is the off-line anal-
ysis in the laboratory. However, this off-line analysis

method will bring 2–4 h2 of time delay, which
results in the lost of the possibility of the real-time
control. Therefore, a MI on-line analysis model,
which can predict the MI in time, will be useful.
Since a MI online analysis model can be con-

structed with the process of the polypropylene, it is
certainly that there are some relationships between
the MI and other easy-measured variables. The MI
prediction model constructed with the process of the
polypropylene can use the chemical and physical
relationships to predict the difficult-measured varia-
bles from the easy-measured variables. However,
developing the model by the process of the indus-
trial process mechanism3–8 is faced a huge challenge,
due to the complexity from the kinetic behavior, the
engineering activity, and the operation of polymer
plants.
On the other hand, some plants have already used

the statistical methodologies to provide information
for process design, control, and monitoring.9,10 At
the same time, neural network has been widely
applied to build the prediction model because of
their good performance in the field of the adaptive
capabilities to nonlinear behaviors. Han11 used three
methods, which are partial least squares (PLS), sup-
port vector machines (SVM), and artificial neural
networks in polymerization process. Kong and
Yang12 added the principal component analysis
(PCA) and PLS to the RBF network to develop a
model for MI prediction of the PP process. Li and
Liu add the particle swarm optimization, simulated
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annealing (PSO-SA).13 Shi and Liu14,15 and Shi16 also
developed several soft-sensor models for MI predic-
tion based on independent component analysis,
multi-scale analysis and RBF neural network (ICA-
MSA-RBF), MSA-PCA-RBF and least squares, support
vector machines (LS-SVM), and so on. As the neural
network developed with these methods, quite a good
performance in the prediction of the PP polymeriza-
tion process is obtained. Although these works have
provided good predictions, much better performance
and university generation of the model are still the
most important targets in academic and industry.

In this article, the most significant work is to find
out the relationships between the difficult-measured
variables and the easy-measured variables. First the
RBF neural network is trained based on several pairs
of target-input data, so the RBF neural network can
predict the MI value from the new values of the
input variables that are unseen in training. Then, the
prediction model will be developed. The adaptive
capability in response to nonlinear relationship of
the neural network is the key that determines the
network’s prediction accuracy. The key to determine
the RBF neural network’s adaptive capability is its
parameters, such as weight, centers, bias, etc.17 A
general set of the parameters cannot always ensure
the model to have a high prediction accuracy for the
PP process. Therefore, an optimization of the net-
work’s parameters is necessary to improve the accu-
racy of the MI prediction. So far, many intelligent
algorithms have been mentioned, such as PCA, PLS,
SVM, CO (Chaos Optimization), VSA, and so on,
which have their advantages and disadvantages,
respectively. Here CO and VSA have been used to
optimize the parameters of the RBF neural network.
Compared with the algorithms mentioned above,
CO and VSA have some outstanding characteristics
and they can search more efficiently, narrow the
search space and optimize the variables to improve
search precision. However, the traditional CO and
the traditional VSA have inherent defects. For the
former, in some situations it will fall into a local op-
timum. If an optimization factor is added to CO, it
will search much more efficiently, which produces
an ICO algorithm. For the latter, it can reduce the
range of the search, but this optimization perform-
ance depends on the initial solutions. Therefor a
novel hybrid algorithm, where the ICO is firstly
added and then combined with VSA, is presented.
The new hybrid algorithm will overcome the defects
of both the traditional CO and VSA, and achieves a
perfect optimizing performance. At last this new
algorithm is used to optimize the parameters of the
network, and the best parameters of the RBF neural
network are obtained.

How to add the intelligent optimizing algorithms
to optimize the parameters of the RBF neural net-

work and then use the network to predict the MI of
the PP process is a project with great deal of
research significances. Here, a novel MI prediction
model, ICO-VSA-RNN model, is obtained, and the
results below will discuss and conclude details
about this model.

RBF NEURAL NETWORK AND NOVEL
ICO-VSA HYBRID ALGORITHM

RBF neural network

The RBF neural network has been widely used for
the quality prediction of the complex and correlated
PP process.18–21 It’s a feed-forward network consists
of three layers: the input layer, the hidden layer,
and the output layer. The input layers deal with the
input vector x. The role of the hidden layer is to
complete the input of the nonlinear transformation.
Output layers are used to complete a linear combi-
nation of hidden layer output. The RBF neural net-
work can be described in Euclidean space:
T : Rr ! Rs. Let xp 2 Rr be the input vector and
ci 2 Rrði ¼ 1; 2; :::; kÞ be the center. The result of out-
put is formed by a linear combination of the hidden
layer’s output, that is

ykðxpÞ ¼
XN
i¼1

wkiUiðjjxp � cijjÞ; i ¼ 1; 2; :::;M (1)

where jj � jj is the Euclidean distance, N is the num-
ber of the hidden layer nodes, Uið�Þ is the result of
the hidden layer node, wki is the output weight, xp is
the input vector, yk is the output of its correspond-
ing output node, M is the number of the output
nodes. And the hidden layer nodes use the Gaussian
activation function to get the result,

Uiðjjxp � cijjÞ ¼ �exp �ðjjxp � cijjÞ2
2rj

 !
; i ¼ 1; 2; :::;M

(2)

where ci and ri are the center and the width of its
corresponding node in the hidden layer, respec-
tively. They can control the speed of decay of the
Gaussian function, that is, control the response of
the hidden layer neurons to the range of the input.

Novel ICO-VSA algorithm

Basic CO algorithm

The basic idea of CO algorithm is to introduce the
chaotic state into the variables. Because the CO algo-
rithm has got ergodicity, randomness and other
characteristics, which makes it to searches more
efficient.22,23

The CO is an iterative algorithm. First it is needed
to define the number of iteration steps k and then
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different variables xi should be initialized with small
difference to get different chaotic variables fi [gener-
ally random values of the range of (0,1)].

The second step is to use the method of carrier to
introduce the chaos variables into the optimization
variable, that is

x0i ¼ ci þ dixi (3)

Comparing the corresponding target value fi(k) of
the new chaos variable xi(k), and save the better
variable and its corresponding target value and
number of iteration steps plus one,

If fiðkÞ � f ; xi ¼ xiðkÞ f ¼ f ðkÞ (4)

And then return to the second step. After achiev-
ing the maximum number of iteration steps, stop the
process of iteration stopped and output the best
variables xi and its corresponding target value f,
respectively.

Variable-scale analysis

VSA is a stochastic gradient method to obtain the
optimum solutions for many optimization prob-
lems.24–26 VSA method use the characteristics of
chaos to map the chaos variables to the region of the
optimization variables, continued to narrow the
search space and optimize the variables to improve
search precision, and thus has a higher search effi-
ciency. The method is shown blow:

Step 1: Calculate the parameters, that is

aiþ1 ¼ xi � c � ðbi � aiÞ (5)

biþ1 ¼ xi þ c � ðbi � aiÞ (6)

To make that the new range does not go out of
the range:

If aiþ1 < ai; aiþ1 ¼ ai (7)

If biþ1 > bi; bi�1 ¼ ai (8)

where c 2 ð0; 0:5Þ; xi is the best variable.
Step 2: Transform the variables, that is

x�i ¼
xi � aiþ1

biþ1 � ai�1
(9)

After these steps, the search space will be reduced
and the model will have the high search efficiency.

ICO-VSA hybrid algorithm

Although the CO has many characteristics which
can makes it to searches more efficiently, after some

generations the speed of ergodicity is slow and eas-
ily falling into a local optimum.27,28 To improve the
search efficiency, the optimization factors have been
added to CO algorithm. This ICO algorithm has a
good performance to improve the search efficiency.
The VSA algorithm has great ability to narrow the
space and then to find out the optimum solution
quickly around the initial state. But a difficult prob-
lem is that it is hard to find out the appropriate
initial state near the optimum. So it is also hard for
the VSA to obtain the optimum.
The ICO-VSA hybrid algorithm is a combination

of ICO, VSA, and RNN, but modifying the RNN
first. The first step is use the RNN to build a basic
model and then use the ICO-VSA algorithm to
optimize the parameters of the RNN. The proce-
dures of ICO-VSA-RNN model are shown as
follows:
Step 1: Create a basic RNN and then initialize the

input vectors and the target vectors. After determin-
ing the mean squared error goal, spread of the radial
basis function, the maximum number of neurons
and the number of neurons to add between displays,
and returns a basic RNN.
Step 2: Use the ICO algorithm to optimize the

parameters of the RNN:
Step 2.1: Initializes the sequence number of

iteration: k ¼ 0, the maximal sequence number of
iteration: N ¼ 100, the minimal error of the output
predicted by the RNN and the real output: min_err
¼ 1, and define a random constant: m 2 ð0; 1Þ, and
define constants i ¼ a ¼ 1;
Step 2.2: Uses input vectors to train the RNN and

then calculate the sum of square root of the error
(err) between the output predicted by the RNN and
the real output. If err<min_err, then set the parame-
ters of this RNN as the best parameter (best_w) and
use these best parameters to define the RNN next
time.
Step 2.3: Performs the ICO algorithm to find out

the appropriate initial state near the optimum:

t ¼ 4 �M � ð1�mÞ (10)

m ¼ modð2 � t; 1Þ (11)

If k > 1; t ¼ 1� 0:49

i� 1

� �
�m m ¼ t (12)

w ¼ bestw þ a: � best w: � ð0:5�mÞ (13)

where t and m are used as the optimization factors,
w and best_w are the parameters of the RNN and
the best parameters, respectively. Equation (12) is
the logistic function and eq. (13) is the tent function,
both two functions all have good performance in the
Chaos optimization.29–33
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Step 2.4: Let k ¼ k þ 1 and set the parameters got
from the eq. (13) as the new parameters of the RNN.
If k < N, go to step 2.2; else go to step 3.1.

Step 3: Performs the VSA algorithm to narrow the
search space and to improve the search efficiency.

Step 3.1: Initializes the sequence number of the
iteration: k ¼ 0, a ¼ a� a=100 and i ¼ 0.

Step 3.2: If a > 1/100, go to step 2.3; else output
the best parameters (best_w), and considered them
as the parameters of the RNN model which is used
to predict melt index.

CASE STUDY

The apparent consumption of China’s polypropylene
industry will still maintain a high growth rate in
next few years, and polypropylene industry in China
will have a bright future. A propylene polymeriza-
tion process is considered in this article, and Figure 1
shows the schematic diagram of the process. The
process consists of four reactors in series, the first
two continuous stirred-tank reactors (CSTR) are
liquid phase reactors, and the latter two are fluid-
ized-bed reactors (FBR).The polymerization mainly

reacts in the first two reactors in a liquid phase, and
in the latter two reactors the reactions are completed
in vapor phase. Melt index, is a thermoplastic in a cer-
tain temperature and pressure (230�C 6 0.4�C, 2.16 6
0.01 kg), the quality of the melt flow through the
standard aperture (diameter 2.0950 6 0.0005 mm,
Length 8.00 6 0.02 mm) within 10 min. The greater
the value of MI is, the smaller the molecular weight of
powder is, so the melt index reflects the size of the
product molecular weight. MI is an important part of
quality control of a propylene polymerization process,
which determines different brands of products and
different grades of product quality.
To develop a prediction model to estimate the

MI should care about many variables should be
considered. According to the actual production
process and process analysis, the main operating vari-
ables are nine easy measurable variables: the flow rate
of three streams of propylene into the reactors (f1, f2,
f3), the flow rate of main catalyst and aid-catalyst
(f4, f5), reactor temperature (T), pressure (p), liquid
level (l), percentage of hydrogen in vapor phase (a).
To avoid the happening of the abnormal situations
happen and to improve the quality of the prediction
model a great number of operational data has been
taken from the DCS historical recorded in the real
plant and are filtered first, and these are operational
data points of polypropylene products of brand F401.
And then normalization is also used to the input and
output variables with respect of the maximum and
minimum values. Table IV shows the operational
dataset points used in the training of the model.
Because the data taken from the real plant are not the
most suitable training dataset, how to choose the suit-
able dataset is also an important procedure. The

Figure 1 General scheme of propylene polymerization.

Figure 2 Training results of ICO-VA-RNN model.

TABLE I
Performance of the ICO-VSA-RNN and RNN on the

Testing Dataset

Model MAE MRE (%) RMSE TIC

RNN 0.0293 1.12 0.0409 0.0078
ICO-VSA-RNN 0.0078 0.30 0.0086 0.0016
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average residence time for this real propylene poly-
merization process is about 2 h, which has been con-
sidered in the data initialization. The method to con-
struct the training dataset here is dividing the data
into training dataset, testing dataset, and generaliza-
tion dataset to the series of the recorded data. After
that an adaptive neural network model are devel-
oped based on the training dataset. After the neural
network model is built, the testing dataset and the
generalization dataset are used to test the accuracy
and the university of the model’s prediction respec-
tively. There are 50 points in the training dataset and
10 points in the testing dataset, the other 10 points is
left to the generalization dataset. The training and
testing dataset are taken from the same batch,
whereas the generalization dataset are taken from
the other batch. This is significant to be noted,
because on this situation the prediction on the test-
ing and generalization dataset is believable. The
RNN used in this article has four neurons and the
ICO-VSA is used to training its weight, bias, and
so on. To study the quality of the MI prediction,
many different ways are used to represent the dif-
ference between the output of the model and the
desired output (the offline analytic MI values from
laboratory). In this article, the following measures
are used for model evaluations: mean absolute
error (MAE), mean relative error (MRE), root of
mean square error (RMSE), and Theil’s inequality

coefficient (TIC). The error indicators are defined
as following:

MAE ¼ 1

N

XN
i¼1

yi � ŷij j (14)

MRE ¼ 1

N

XN
i¼1

yi � ŷi
yi

����
���� (15)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � ŷiÞ2
vuut (16)

TIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðyi � ŷiÞ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 y
2
i

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ŷ

2
i

q (17)

where yi and ŷi denote the measured value and pre-
dicted result of MI respectively.
The MAE, MRE, and RMSE confirm the prediction

accuracy of the proposed methods. TIC indicates a
good level of agreement between the proposed
model and the studied process.34

Figure 1 shows the general scheme of propylene
polymerization and almost 55% of the propylene
polymerization uses this scheme in the world.
The training results are shown in Figure 2, where

the curve marked with crosses is the MI value

Figure 3 Performance of the ICO-VA-RNN and RNN on
the testing dataset.

TABLE II
Performance of the ICO-VSA-RNN and RNN on the

Generalization Dataset

Model MAE MRE (%) RMSE TIC

RNN 0.0311 1.18 0.0334 0.0063
ICO-VSA-RNN 0.0101 0.39 0.0102 0.0019

Figure 4 Performance of the ICO-VA-RNN and RNN on
the generalization dataset.

TABLE III
Reported Best Results in MI Prediction and Comparison

Between Them and This Study

Work MAE MRE (%) RMSE TIC

Shi and Liu14 0.0663 2.72 – –
Shi and Liu15 0.0218 0.83 0.0287 0.0055
Li and Liu13 0.0635 2.49 0.0312 0.0138
This study 0.0078 0.30 0.0086 0.0016
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predicted by the ICO-VSA-RNN model, while the
curve marked with circles is the real MI value
obtained from analysis in laboratory. Obviously, the
results of training are good and almost all the points
predicted by the ICO-VSA-RNN model match the
real points.

The testing results are listed in Table I, which
shows that the ICO-VSA-RNN model has the best
performance on the testing dataset. It can be seen
that RBF NN model gives an MAE of 0.0293, an

MRE of 1.12%, a RMSE of 0.0409 and a TIC of
0.0078. For the ICO-VSA-RNN model, compose by a
group of RBF NNs optimized with the ICO-VSA
algorithm, has an MAE of 0.0078, an MRE of 0.30%,
a RMSE of 0.0086 and a TIC of 0.0016. It shows that
the ICO-VSA-RNN model has much better quality
than the signal NN model. Compared with the RBF
NN model the MAE, MRE, RMSE, and TIC are
0.0215, 0.82%, 0.0323, and 0.0062, with percentage
decrease of 73.38%, 73.21%, 78.97%, and 79.49%,

TABLE IV
The Operational Dataset Points used in the Model’s Training

a f4 f5 f1 f2 f3 l p T

1 0.8628 0.3682 0.6584 0.9 0.1873 0.8904 0.8959 0.9 0.5615
2 0.9 0.1711 0.6554 0.8893 0.1 0.8973 0.9 0.7617 0.4846
3 0.6054 0.3154 0.6638 0.8652 0.2455 0.8938 0.8935 0.6553 0.4692
4 0.6302 0.2821 0.6652 0.7714 0.3545 0.8938 0.887 0.683 0.5615
5 0.5868 0.3079 0.6603 0.7464 0.6382 0.8932 0.8617 0.6872 0.5769
6 0.6674 0.4443 0.667 0.7375 0.8418 0.8925 0.8617 0.6745 0.5615
7 0.6705 0.4493 0.6697 0.783 0.7327 0.8932 0.8463 0.5915 0.5
8 0.6953 0.4975 0.667 0.7813 0.7473 0.8938 0.8544 0.6085 0.4846
9 0.6829 0.1 0.6671 0.8027 0.74 0.8938 0.4727 0.3723 0.1

10 0.7016 0.517 0.6732 0.8384 0.74 0.8911 0.5012 0.7809 0.7
11 0.5744 0.5087 0.6762 0.8384 0.74 0.8966 0.5126 0.5553 0.5
12 0.5341 0.5216 0.6803 0.817 0.74 0.8897 0.5077 0.6383 0.5
13 0.4659 0.5287 0.6947 0.742 0.7473 0.8938 0.4866 0.6511 0.5769
14 0.4101 0.5615 0.7031 0.7393 0.7327 0.8952 0.4801 0.5489 0.5308
15 0.3388 0.3391 0.7019 0.858 0.7473 0.8979 0.5151 0.5532 0.6077
16 0.3977 0.4921 0.7044 0.8491 0.7327 0.8925 0.5069 0.5298 0.6231
17 0.3698 0.4879 0.7013 0.8241 0.74 0.8986 0.5216 0.4404 0.5462
18 0.345 0.5279 0.6983 0.7589 0.74 0.8932 0.5183 0.4851 0.5615
19 0.2364 0.7836 0.6979 0.7652 0.7473 0.8966 0.5321 0.5872 0.6077
20 0.2612 0.9 0.7994 0.783 0.74 0.9 0.7275 0.4851 0.5769
21 0.2333 0.8655 0.5228 0.7786 0.74 0.8891 0.7275 0.4255 0.5
22 0.1589 0.8364 0.4201 0.7732 0.74 0.8911 0.7405 0.4043 0.5308
23 0.1 0.8459 0.1 0.7616 0.7327 0.8891 0.738 0.3404 0.4077
24 0.3016 0.831 0.891 0.808 0.74 0.8973 0.7568 0.3553 0.5308
25 0.3822 0.799 0.8798 0.7179 0.74 0.165 0.7755 0.2723 0.4846
26 0.5124 0.6356 0.887 0.7196 0.74 0.1267 0.7779 0.3957 0.6692
27 0.5682 0.6447 0.8782 0.7429 0.74 0.1246 0.7706 0.5021 0.6692
28 0.5341 0.648 0.873 0.8125 0.74 0.1 0.7673 0.4 0.4692
29 0.4008 0.6405 0.874 0.7964 0.74 0.1281 0.7649 0.4702 0.5769
30 0.3729 0.6335 0.8752 0.7884 0.74 0.1376 0.7682 0.4362 0.4846
31 0.4039 0.6351 0.875 0.7518 0.74 0.1349 0.7682 0.4787 0.5462
32 0.4473 0.6193 0.8858 0.7089 0.7327 0.1308 0.7812 0.5511 0.5615
33 0.6023 0.6268 0.8836 0.742 0.7327 0.1171 0.7934 0.6915 0.7154
34 0.6519 0.6164 0.879 0.7375 0.4855 0.1486 0.808 0.583 0.6231
35 0.6457 0.6081 0.8786 0.7473 0.4709 0.7624 0.8105 0.266 0.1923
36 0.5868 0.6123 0.895 0.7875 0.5073 0.7501 0.7991 0.5979 0.6538
37 0.5961 0.621 0.9 0.7964 0.6745 0.7583 0.7934 0.4128 0.4231
38 0.5279 0.6243 0.8983 0.8045 0.9 0.7919 0.7787 0.3106 0.2846
39 0.5093 0.6202 0.8953 0.7375 0.7327 0.7837 0.7787 0.5894 0.6692
40 0.593 0.6277 0.8979 0.7402 0.74 0.7659 0.782 0.4 0.3923
41 0.5372 0.6314 0.8999 0.717 0.7473 0.7563 0.7755 0.5787 0.6846
42 0.5155 0.6459 0.8996 0.7732 0.7327 0.7467 0.7739 0.4468 0.5462
43 0.3233 0.6497 0.8942 0.7687 0.7109 0.7474 0.7885 0.5532 0.6077
44 0.2519 0.6979 0.7915 0.8027 0.3618 0.7419 0.8023 0.5128 0.5615
45 0.4473 0.6921 0.7851 0.8205 0.2455 0.7385 0.8162 0.6213 0.6231
46 0.5186 0.6946 0.7795 0.758 0.7691 0.7289 0.8202 0.7149 0.7154
47 0.5496 0.6846 0.7805 0.8161 0.74 0.7234 0.817 0.5489 0.5462
48 0.4814 0.7062 0.7815 0.8214 0.7473 0.7009 0.8113 0.6596 0.7308
49 0.4194 0.6888 0.7811 0.8616 0.7327 0.6933 0.8202 0.8 0.9
50 0.3636 0.6925 0.7843 0.883 0.74 0.7009 0.8072 0.5809 0.5462
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respectively. These data prove that the ICO-VSA-
RNN model provides wonderful MI prediction accu-
racy for the propylene polymerization process.

A visual way to show how much better the ICO-
VSA-RNN model works than the RBF NN model do
on the testing dataset is represented in Figure 3. The
curve marked with crosses is the MI value predicted
by the ICO-VSA-RNN model, while the curve
marked with circles is the real MI value obtained
from analysis in laboratory. The results predicted by
RBF NN model are depicted by curves marked with
asterisks. It shows that the result of the ICO-VSA-
RNN model is better that the RBF NN model and
nearly being the real MI value on most points. This
visual comparison shows the high accuracy of the
ICO-VSA-RNN model in the prediction of MI value.

To see more about the universality of the proposed
MI prediction models, models are further evaluated
on the generalization dataset. An accurate prediction
of MI on this dataset gives a strong support that the
proposed model owns good universality.

Table II shows the ICO-VSA-RNN model also has
the best performance on the generalization dataset. It
shows that the ICO-VSA-RNN model has much better
quality than the signal RBF NN model. Compared
with the RBF NN model the MAE, MRE, RMSE, and
TIC are 0.0210, 0.79%, 0.0232, and 0.0044, with percent-
age decrease of 67.52%, 66.95%, 69.46%, and 69.84%
respectively. It shows that the ICA-VSA-RNN model
has a better universality than the RBFNNmodel.

However, another visual comparison to show two
models work on generalization dataset is also shown
in Figure 4. The curve marked with crosses is the MI
value predicted by the ICO-VSA-RNN model, while
the results predicted by RBF NN model are depicted
by curves marked with asterisks. The curve marked
with circles is the real MI value obtained from anal-
ysis in laboratory. Absolutely, the ICO-VSA-RNN
model gives a nearly real MI value prediction, much
more accurate than RBF NN model. After all, Table
II and Figure 4 prove that the ICO-VSA-RNN model
holds better universality in MI prediction both in
data and graph.

Table III shows the comparison of the MI predic-
tion results between our work and published litera-
tures. Compared with the results of Shi and Liu,14

Shi and Liu,15 and Li and Liu13 the MRE are 2.73%,
2.49%, and 0.83%, with percentage decrease of
88.97%, 87.95%, and 63.86%, respectively. It is clear
that the results of our work are much better than
those published works.

CONCLUSION

A method uses an optimized RBF neural network
for PP MI prediction from other variables is pre-
sented in this article. The RBF neural network is

optimized by an ICO-VSA algorithm, which added
the ICO first and then combined the VSA to optimize
the parameters of the RBF neural network at last. The
proposed ICO-VSA-RNN model predicts MI with
mean relative errors of 0.3% on the test dataset, com-
pared with mean relative errors of 1.12% from RNN
model. It obtains even smaller prediction error than
the RNN model does, with a decrease percentage of
73.38% and 67.52% in MRE on testing dataset and
generalization dataset respectively, compared with
that of ICO-VSA-RNN model. The results reveal that
the proposed model presents the relationship of the
process variables and the target MI of the PP process
successfully. And this intelligent model will be
applied widely in the area for prediction of MI
because of its wonderful performance.

NOMENCLATURE

MI Melt index
PP polypropylene
RBF Radial basis function
CO Chaos optimization
ICO Improved chaos optimization
RNN RBF neural network
VSA Variable-scale analysis
PLS Partial least squares
SVM Support vector machines
PCA Principal component analysis
PLS Partial least squares
PSO Particle swarm optimization
SA Simulated annealing
ICA Independent component analysis
MSA Multi-scale analysis
LS Least squares
CSTR Continuous stirred-tank reactors
FBR Fluidized-bed reactors
MAE Mean absolute error
MRE Mean relative error
RMSE Root of mean square error
TIC Theil’s inequality coefficient
jj � jj The Euclidean distance
N The number of the hidden layer nodes
Uð�Þ The result of the hidden layer node
wki The output weight
xp The input vector
yk The output of its corresponding output

node
M The number of the output nodes
ci The center of its corresponding node in the

hidden layer
ri The width of its corresponding node in the

hidden layer
xi The chaotic variable in the ICO-VSA-RNN

hybrid algorithm
fi The corresponding target variable of xi
ai, bi The parameters of the VSA use to optimize xi
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xi* The chaotic variable that has been
optimized by the VSA

t, m The optimization factors
w The parameters of the RNN model
best_w The best parameters of the RNN model
yi, ŷi The measured value and the predicted

result of MI respectively
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